Energy Dissipation and Local, Story, and Global Ductility Reduction Factors in Steel Frames under Vibrations Produced by Earthquakes

Author:

Reyes-Salazar Alfredo1ORCID,Bojórquez Edén1ORCID,Bojorquez Juan1,Valenzuela-Beltran Federico2ORCID,Llanes-Tizoc Mario D.1ORCID

Affiliation:

1. Facultad de Ingeniería, Universidad Autónoma de Sinaloa, Culiacán, CP 80040 Sinaloa, Mexico

2. Instituto de Ingeniería, Universidad Nacional Autónoma de México, CP 04510 Ciudad de México, Mexico

Abstract

Ductility plays a central role in seismic analysis and design of steel buildings. A numerical investigation regarding the evaluation of energy dissipation, ductility, and ductility reduction factors for local, story, and global structural levels is conducted. Some steel buildings and strong motions, which were part of the SAC Steel Project, are used. Bending local ductility capacity (µLϕ) of beams can reach values of up to 20, as shown in experimental investigations. The values are larger for medium than for low-rise buildings, reflecting the effect of the structural complexity on µLϕ. Most of the dissipated energy occurs on beams; however, resultant stresses at columns are also significantly reduced by beam yielding. A value of 1/3 is proposed for the ratio of global to local ductility; thus, if local ductility capacity is stated as the basis for the design, global ductility capacity can be calculated by using this ratio. It is implicitly assumed in seismic codes that the magnitude of the global ductility reduction factor is about 4; according to the results found in this paper, it is not justified; a value of 3 is observed to be more reasonable. According to the well-known ratio of the ductility reduction factor to ductility, this ratio should be unity for the models under consideration; the results of this study indicate that, for global response parameters, a value of 3/4 is more appropriate and that, for local response parameters, values larger than 2 can be reached; the implication of this is that using simplified methods like the static equivalent lateral force may result in nonconservative designs from a global structural point of view, but in conservative designs from a local point of view. A value of 8 is proposed for the ratio of the global ductility reduction factor to the global normalized energy.

Funder

La Universidad Autónoma de Sinaloa (UAS)

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3