Experimental Study on the Evolution of Argillization of Mudstone and Cutter Wear during the TBM Tunnelling

Author:

Song Kanglei1,Liu Bolong1ORCID,Yang Haiqing1

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing 400045, China

Abstract

Argillization is a process in which clay-bearing rocks disintegrate into the clay under the action of high temperature, pressure, and water. When tunnel boring machines (TBMs) excavate in the mudstone, argillization takes place, causing the clogging of the TBM cutterhead. As a result, the penetration rate drops gradually. Abnormal wear might occur. To investigate the evolution of argillization of mudstone and cutter wear during the TBM tunnelling, a series of rotary indentation tests were carried out on the self-designed experimental bench for different loading times. During the test, the temperature and penetration depth of disc cutters were measured in real time. After loading, microstructures of cutting grooves, slacking mudstone, and worn cutter ring were observed by stereomicroscope. Consequently, the evolution of argillization in mudstone and cutter wear were investigated. Experimental results indicate that the argillization process of mudstone by disc cutter can be divided into three stages: mechanical cutting stage, deterioration of mudstone and the formation of slacking mudstone stage, and adherence of slacking mudstone stage. Specifically, at mechanical cutting stage, the rock was cut by cutter directly, causing high frictional heat. Then the microstructure of mudstone was deteriorated due to the water-weakening mechanisms, temperature effect, and mechanical activation effect. Finally, the slacking mudstone was adhered to the disc cutter. Correspondingly, due to the argillization of mudstone, the disc cutter wear goes through the mechanical wear stage, argillization wear stage, and secondary wear stage in sequence. This investigation reveals the rock cutting mechanism of TBM considering the argillization of mudstone. Furthermore, it provides some references for design and operation of the TBM.

Funder

Graduate Research and Innovation Foundation of Chongqing, China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3