Affiliation:
1. School of Electronic and Information Engineering, Beijing Jiaotong University, China
2. School of Computer and Information Engineering, Chuzhou University, China
Abstract
The identifier/locator split (ILS) architectures are highly promising to reduce the signaling latency of frequent handovers in fifth generation (5G) networks, while decentralized vehicular mobility management holds greater potential than the traditional centralized management to enhance the critical performance of highly dynamic and dense cell networks. By carefully exploiting ILS, dual connectivity, and multiaccess edge computing (MEC) concepts, this paper proposes a decentralized vehicular mobility management mechanism in the network with dense 5G Non-Standalone deployment. Under such a mechanism, we design an ILS-based local anchor handover management architecture to reduce signaling costs and handover latency. Specifically, we propose a quality of service- (QoS-) based handover decision algorithm using a long short-term memory- (LSTM-) based trajectory prediction method to obtain the cell sojourn time of connected vehicles (CVs) in predefined QoS coverage areas. Combining a built-in dynamic handover trigger condition, this algorithm can ensure a flexible load balance as well as low handover times. Extensive simulation results are presented to verify the effectiveness of the proposed mechanism in improving network performance.
Funder
National Key Research and Development Project of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Implementation and Evaluation of LISP Publish/Subscribe;2023 2nd International Conference on 6G Networking (6GNet);2023-10-18