Decentralized Vehicular Mobility Management Study for 5G Identifier/Locator Split Networks

Author:

Hong Gaofeng1ORCID,Yang Bin2,Su Wei1,Wen Qili1,Hou Xindi1,Li Haoru1

Affiliation:

1. School of Electronic and Information Engineering, Beijing Jiaotong University, China

2. School of Computer and Information Engineering, Chuzhou University, China

Abstract

The identifier/locator split (ILS) architectures are highly promising to reduce the signaling latency of frequent handovers in fifth generation (5G) networks, while decentralized vehicular mobility management holds greater potential than the traditional centralized management to enhance the critical performance of highly dynamic and dense cell networks. By carefully exploiting ILS, dual connectivity, and multiaccess edge computing (MEC) concepts, this paper proposes a decentralized vehicular mobility management mechanism in the network with dense 5G Non-Standalone deployment. Under such a mechanism, we design an ILS-based local anchor handover management architecture to reduce signaling costs and handover latency. Specifically, we propose a quality of service- (QoS-) based handover decision algorithm using a long short-term memory- (LSTM-) based trajectory prediction method to obtain the cell sojourn time of connected vehicles (CVs) in predefined QoS coverage areas. Combining a built-in dynamic handover trigger condition, this algorithm can ensure a flexible load balance as well as low handover times. Extensive simulation results are presented to verify the effectiveness of the proposed mechanism in improving network performance.

Funder

National Key Research and Development Project of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference45 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation and Evaluation of LISP Publish/Subscribe;2023 2nd International Conference on 6G Networking (6GNet);2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3