The Effect of Irradiation with a 405 nm Blue-Violet Laser on the Bacterial Adhesion on the Osteosynthetic Biomaterials

Author:

Terada Chika1ORCID,Imamura Takahiro1,Ohshima Tomoko2,Maeda Nobuko2,Tatehara Seiko1,Tokuyama-Toda Reiko1,Yamachika Shigeo1,Toyoda Nagataka1,Satomura Kazuhito1ORCID

Affiliation:

1. Department of Oral Medicine and Stomatology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan

2. Department of Oral Microbiology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan

Abstract

Delayed postoperative infection is known as a major complication after bone surgeries using osteosynthetic biomaterial such as titanium (Ti) and bioresorbable organic materials. However, the precise cause of this type of infection is still unclear and no effective prevention has been established. The purpose of this study is to investigate the effect of irradiation with a 405 nm blue-violet laser on the bacteria adhered on the Ti and hydroxyapatite-poly-L-lactic acid- (HA-PLLA) based material surfaces and to verify the possibility of its clinical application to prevent the delayed postoperative infection after bone surgeries using osteosynthetic biomaterial. The suspension of Staphylococcus aureus FDA 209P was delivered onto the surface of disks composed of Ti or HA-PLLA. Bacterial adhesion on each disk was observed using a scanning electron microscope (SEM). After thorough washing with distilled water, the growth of bacteria attached to the material surfaces was examined with an alamar blue-based redox indicator. Moreover, a bactericidal effect of 405 nm blue-violet laser irradiation on residual bacteria on both materials was investigated using colony-forming assay. As a result, there was no significant difference in the bacterial adhesion between Ti and HA-PLLA materials. In contrast, 45 J/cm2 of irradiation with 405 nm blue-violet laser inhibited the bacterial growth at approximately 93% on Ti disks and at approximately 99% on HA-PLLA disks. This study clearly demonstrated the possibility that the irradiation with a 405 nm blue-violet laser is useful as an alternative management strategy for the prevention of delayed postoperative infection after bone surgeries using osteosynthetic biomaterials.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3