Modulation of Corneal FAK/PI3K/Akt Signaling Expression and of Metalloproteinase-2 and Metalloproteinase-9 during the Development of Herpes Simplex Keratitis

Author:

Ke Lan1,Yang Yanning1ORCID,Li Jing wei1,Wang Bo1,Wang Yujing1ORCID,Yang Wanju1,Yan Jiangbo1

Affiliation:

1. Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China

Abstract

To observe the expression of MMP-2 and MMP-9 and of the FAK/PI3K/Akt signaling pathway in HSK. Fifty BALB/c mice were infected to establish the model and killed on days 0, 2, 7, 14, and 28. The cornea samples were prepared, respectively. Slit lamp examination, immunofluorescence staining, reverse transcription PCR, and Western blot were used to detect the index. After HSV-1 infection, different degrees of epithelial or stromal damage and corneal opacity were observed. Immunofluorescence staining showed that the expressions of MMP-2 and MMP-9 at different levels of corneal tissue were observed on the 0d, 2d, 7d, 14d, and 28d. Compared with 0d, the relative expression levels of MMP-2 and MMP-9 mRNA at 2d, 7d, 14d, and 28d were significantly increased (all P< 0.05). Compared with 14d, the relative expression of MMP-2 and MMP-9 mRNA decreased on the 2d, 7d, and 28d (all P< 0.05). Western blot showed that the protein expressions of p-FAK, p-PI3K, p-Akt, MMP-2, and MMP-9 at 2d, 14d, and 28d were all significantly higher than 0d (all P< 0.05). At 14 d, the expressions of p-FAK, p-PI3K, p-Akt, and MMP-2 were significantly higher than those at 2d, 7d, and 28d (all P< 0.05). The protein expression of FAK, PI3K, and Akt in corneal of mice in each time period had no significant (all P> 0.05). These data suggest that FAK/PI3K/Akt signaling pathway and MMP-2 and MMP-9 may be involved in the development of HSK.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3