A Simple Approach to Bioconjugation at Diverse Levels: Metal-Free Click Reactions of Activated Alkynes with Native Groups of Biotargets without Prefunctionalization

Author:

Hu Xianglong12,Zhao Xueqian1,He Benzhao1,Zhao Zheng1,Zheng Zheng1,Zhang Pengfei1,Shi Xiujuan13,Kwok Ryan T. K.1,Lam Jacky W. Y.1,Qin Anjun4,Tang Ben Zhong134

Affiliation:

1. Department of Chemistry, Hong Kong Branch of Chinese National Engineering, Research Center for Tissue Restoration and Reconstruction, Institute of Advanced Study, State Key Laboratory of Molecular Nanoscience, Division of Life Science and Diversion of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

2. Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China

3. HKUST-Shenzhen Research Institute, Shenzhen 518057, China

4. NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

Abstract

The efficient bioconjugation of functional groups/molecules to targeted matrix and bio-related species drives the great development of material science and biomedicine, while the dilemma of metal catalysis, uneasy premodification, and limited reaction efficiency in traditional bioconjugation has restricted the booming development to some extent. Here, we provide a strategy for metal-free click bioconjugation at diverse levels based on activated alkynes. As a proof-of-concept, the abundant native groups including amine, thiol, and hydroxyl groups can directly react with activated alkynes without any modification in the absence of metal catalysis. Through this strategy, high-efficient modification and potential functionalization can be achieved for natural polysaccharide, biocompatible polyethylene glycol (PEG), synthetic polymers, cell penetrating peptide, protein, fast whole-cell mapping, and even quick differentiation and staining of Gram-positive bacteria, etc. Therefore, current metal-free click bioconjugation strategy based on activated alkynes is promising for the development of quick fluorescence labeling and functional modification of many targets and can be widely applied towards the fabrication of complex biomaterials and future in vivo labeling and detection.

Funder

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3