No Modulatory Effects when Stimulating the Right Inferior Frontal Gyrus with Continuous 6 Hz tACS and tRNS on Response Inhibition: A Behavioral Study

Author:

Brauer Hannah12ORCID,Kadish Navah Ester1,Pedersen Anya3,Siniatchkin Michael1,Moliadze Vera1ORCID

Affiliation:

1. Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian Albrechts University, Kiel, Germany

2. Department of Child and Adolescent Psychiatry and Psychotherapy, School of Medicine, Christian Albrechts University, Kiel, Germany

3. Clinical Psychology and Psychotherapy, Christian Albrechts University, Kiel, Germany

Abstract

Response inhibition is the cognitive process required to cancel an intended action. During that process, a “go” reaction is intercepted particularly by the right inferior frontal gyrus (rIFG) and presupplementary motor area (pre-SMA). After the commission of inhibition errors, theta activity (4–8 Hz) is related to the adaption processes. In this study, we intend to examine whether the boosting of theta activity by electrical stimulation over rIFG reduces the number of errors and the reaction times in a response inhibition task (Go/NoGo paradigm) during and after stimulation. 23 healthy right-handed adults participated in the study. In three separate sessions, theta tACS at 6 Hz, transcranial random noise (tRNS) as a second stimulation condition, and sham stimulation were applied for 20 minutes. Based on behavioral data, this study could not show any effects of 6 Hz tACS as well as full spectrum tRNS on response inhibition in any of the conditions. Since many findings support the relevance of the rIFG for response inhibition, this could mean that 6 Hz activity is not important for response inhibition in that structure. Reasons for our null findings could also lie in the stimulation parameters, such as the electrode montage or the stimulation frequency, which are discussed in this article in more detail. Sharing negative findings will have (1) positive impact on future research questions and study design and will improve (2) knowledge acquisition of noninvasive transcranial brain stimulation techniques.

Funder

Land Schleswig-Holstein

Publisher

Hindawi Limited

Subject

Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3