A Coupled Nonlinear Flow Model for Particle Migration and Seepage Properties of Water Inrush through Broken Rock Mass

Author:

Shi Wenhao12ORCID,Yang Tianhong2

Affiliation:

1. School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China

2. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

Abstract

A large number of statistics indicate that broken rock mass always transforms into a flowing channel and leads to water inrush disasters in mining engineering, such as fault, karst, and strongly weathered rock mass. During the process of water inrush, the structure of the broken rock mass is constantly changing due to seepage erosion under high-velocity flow. Therefore, it is of vital importance to quantitatively evaluate the flow behavior of the water inrush related to the seepage erosion in order to prevent or reduce the risks. This study described a coupled nonlinear flow model, which couples the high-velocity seepage, the small particle migration, and the evolution of the broken rock mass structure. The model was verified firstly for simulation of nonlinear flow behavior by comparing with the traditional one. Then, the proposed model was used to simulate the evolution of particle migration and seepage properties of the water inrush through broken rock mass by a numerical case. The simulation results generally agree well with the existing experimental results. The simulations indicate that small particle migration causes the unstable characteristics of the seepage and the heterogeneity properties of the broken rock mass, which lead to the nonlinear flow behavior of the water inrush in both time and space. From a different perspective, it also indicates that the proposed model is capable of simulating the interaction of high-velocity seepage, small particle migration, and evolution of broken rock mass structure in the process of water inrush.

Funder

Science and Technology Project of Jiangsu Construction System

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3