Ge/Si Quantum Dots Superlattices Grown at Different Temperatures and Characterized by Raman Spectroscopy and Capacitance Measurements

Author:

Rodrigues A. D.1,Chiquito A. J.1,Zanelatto G.1,Milekhin A. G.2,Nikiforov A. I.2,Ulyanov V. V.2,Pchelyakov O. P.2,Zahn D. R. T.3,Galzerani J. C.1

Affiliation:

1. Department of Physics, Federal University of São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil

2. Institute of Semiconductor Physics, Novosibirsk 630090, Russia

3. Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany

Abstract

Ge/Si heterostructures with Ge self-assembled quantum dots (SAQDs) grown at various temperatures by molecular beam epitaxy were investigated using resonant Raman spectroscopy and capacitance measurements. The occurrence of quantum confinement effects was confirmed by both techniques. For the structures grown at low temperatures (300400°C), the SAQDs optical phonon wavenumbers decrease as the Raman excitation energy is increased; this is an evidence of the scattering sensitivity to the size of the SAQDs and to the inhomogeneity in their sizes. However, the opposite behavior is observed for the SAQDs grown at higher temperatures, as a consequence of the competition between the phonon localization and internal mechanical stress effects. TheE1electronic transition of the Ge in the SAQDs was found to be shifted towards higher energies as compared to bulk Ge, due to biaxial compressive stress and to the electronic confinement effect present in the structures. The intermixing of Si atoms in the quantum dots was found to be much more significant for the sample grown at higher temperatures. The capacitance measurements, besides confirming the existence of the dots in these structures, showed that the deepest Ge layers lose their 0D signature as the growth temperature increases.

Publisher

Hindawi Limited

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3