Improved Interactive Genetic Algorithm for Three-Dimensional Vase Modeling Design

Author:

Huang Dongbo1ORCID,Xu Xing12ORCID,Zhang Yinglong2ORCID,Xia Xuewen2ORCID

Affiliation:

1. School of Computer Science, Minnan Normal University, Zhangzhou 363000, China

2. School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China

Abstract

Interactive genetic algorithm (IGA) is an effective way to help users with product design optimization. However, in this process, users need to evaluate the fitness of all individuals in each generation. It will cause users’ fatigue when users cannot find satisfactory products after multi-generation evaluations. To solve this problem, an improved interactive genetic algorithm (IGA-KDTGIM) is proposed, which combines K-dimensional tree surrogate model and a graphic interaction mechanism. In this algorithm, the K-dimensional tree surrogate model is built on the basis of users' historical evaluation information to assist the user's evaluation, so as to reduce the times of users' evaluation. At the same time, users are allowed to interact with the graphic interface to adjust the shape of the individual, so as to increase users' creation fun and to make the evolution direction of the population conform to users' expectations. The IGA-KDTGIM is applied to the 3D vase design system and independently experimented with IGA, IGA-KDT, and IGA-GIM, respectively. The average fitness, maximum average fitness, and evaluation times of statistical data were compared and analyzed. Compared with traditional IGA, the number of evaluations required by users decreased by 60.0%, and the average fitness of the population increased by 15.0%. The results show that this method can reduce the users' operation fatigue and improve the ability of finding satisfactory solutions to a certain extent.

Funder

Natural Science Foundation of Fujian Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ALGINEER: Algorithmic design of complex systems;Advanced Engineering Informatics;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3