Affiliation:
1. School of Computer Science, Minnan Normal University, Zhangzhou 363000, China
2. School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
Abstract
Interactive genetic algorithm (IGA) is an effective way to help users with product design optimization. However, in this process, users need to evaluate the fitness of all individuals in each generation. It will cause users’ fatigue when users cannot find satisfactory products after multi-generation evaluations. To solve this problem, an improved interactive genetic algorithm (IGA-KDTGIM) is proposed, which combines K-dimensional tree surrogate model and a graphic interaction mechanism. In this algorithm, the K-dimensional tree surrogate model is built on the basis of users' historical evaluation information to assist the user's evaluation, so as to reduce the times of users' evaluation. At the same time, users are allowed to interact with the graphic interface to adjust the shape of the individual, so as to increase users' creation fun and to make the evolution direction of the population conform to users' expectations. The IGA-KDTGIM is applied to the 3D vase design system and independently experimented with IGA, IGA-KDT, and IGA-GIM, respectively. The average fitness, maximum average fitness, and evaluation times of statistical data were compared and analyzed. Compared with traditional IGA, the number of evaluations required by users decreased by 60.0%, and the average fitness of the population increased by 15.0%. The results show that this method can reduce the users' operation fatigue and improve the ability of finding satisfactory solutions to a certain extent.
Funder
Natural Science Foundation of Fujian Province
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献