CBR-Based Decision Support Methodology for Cybercrime Investigation: Focused on the Data-Driven Website Defacement Analysis

Author:

Han Mee Lan1ORCID,Kwak Byung Il1ORCID,Kim Huy Kang1ORCID

Affiliation:

1. Graduate School of Information Security, Korea University, Seoul, Republic of Korea

Abstract

Criminal profiling is a useful technique to identify the most plausible suspects based on the evidence discovered at the crime scene. Similar to offline criminal profiling, in-depth profiling for cybercrime investigation is useful in analysing cyberattacks and for speculating on the identities of the criminals. Every cybercrime committed by the same hacker or hacking group has unique traits such as attack purpose, attack methods, and target. These unique traits are revealed in the evidence of cybercrime; in some cases, these unique traits are well hidden in the evidence such that it cannot be easily perceived. Therefore, a complete analysis of several factors concerning cybercrime can provide an investigator with concrete evidence to attribute the attacks and narrow down the scope of the criminal data and grasp the criminals in the end. We herein propose a decision support methodology based on the case-based reasoning (CBR) for cybercrime investigation. This study focuses on the massive data-driven analysis of website defacement. Our primary aim in this study is to demonstrate the practicality of the proposed methodology as a proof of concept. The assessment of website defacement was performed through the similarity measure and the clustering processing in the reasoning engine based on the CBR. Our results show that the proposed methodology that focuses on the investigation enables a better understanding and interpretation of website defacement and assists in inferring the hacker’s behavioural traits from the available evidence concerning website defacement. The results of the case studies demonstrate that our proposed methodology is beneficial for understanding the behaviour and motivation of the hacker and that our proposed data-driven analytic methodology can be utilized as a decision support system for cybercrime investigation.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hacker group identification based on dynamic heterogeneous graph node update;Applied Soft Computing;2024-06

2. Deep Learning Assisted Cyber Criminal Profiling;2023 IEEE 6th International Conference on Big Data and Artificial Intelligence (BDAI);2023-07-07

3. Intelligent Decision Support Based on Mental User Models: Research Design;Software Engineering Application in Systems Design;2023

4. Website Defacement Detection and Monitoring Methods: A Review;Electronics;2022-11-01

5. HGHAN: Hacker group identification based on heterogeneous graph attention network;Information Sciences;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3