Evaluation of Vertical Human‐Structure Interaction on a Pedestrian Bridge Using a Predictive Human Gait Model

Author:

Aux Juan D.ORCID,Castillo BryanORCID,Riascos Carlos,Marulanda Johannio,Thomson Peter

Abstract

Many modern pedestrian bridges exhibit flexibility and susceptibility to vibrations due to the use of lightweight and high‐strength materials, which can cause discomfort for pedestrians and affect their serviceability. Although gait biomechanics have been extensively studied and optimisation techniques for gait prediction on rigid surfaces have been previously employed, there is a paucity of studies investigating the effects of human‐structure interaction on pedestrian crossings over flexible structures. In this study, inverse dynamics and optimisation techniques were employed to predict human gait on a flexible structure in the sagittal plane. Gait was formulated as an optimal motor task subject to multiple constraints, with the performance criterion being the minimization of mechanical energy expenditure throughout a complete gait cycle. Segmental movements, pedestrian‐applied forces, and bridge vibrations were predicted based on parameters describing gait (such as gait speed, gait frequency, and double support duration), as well as physical and dynamic parameters characterizing the pedestrian bridge (including natural frequency, damping coefficient, and bridge length).

Funder

Universidad del Valle

Ministerio de Ciencia, Tecnología e Innovación

Publisher

Wiley

Reference50 articles.

1. Vibration serviceability of footbridges under human-induced excitation: a literature review

2. Analysis of human-structure interaction in footbridges in Santiago de Cali;Anderson Sánchez J.;DYNA (Colombia),2013

3. Efectos de la interacción humano-estructura en las propiedades dinámicas de una tribuna

4. The London Millennium footbridge;Dallard P.;Structural Engineer,2001

5. Pedestrian-induced lateral vibrations of footbridges: A literature review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3