A Robust Invariant Local Feature Matching Method for Changing Scenes

Author:

Wang Di1ORCID,Zhang Hongying1ORCID,Shao Yanhua1ORCID

Affiliation:

1. School of Information Engineering, Southwest University of Science and Technology, 621010 Mianyang, China

Abstract

The precise evaluation of camera position and orientation is a momentous procedure of most machine vision tasks, especially visual localization. Aiming at the shortcomings of local features of dealing with changing scenes and the problem of realizing a robust end-to-end network that worked from feature detection to matching, an invariant local feature matching method for changing scene image pairs is proposed, which is a network that integrates feature detection, descriptor constitution, and feature matching. In the feature point detection and descriptor construction stage, joint training is carried out based on a neural network. In the feature point extraction and descriptor construction stage, joint training is carried out based on a neural network. To obtain local features with solid robustness to viewpoint and illumination changes, the Vector of Locally Aggregated Descriptors based on Neural Network (NetVLAD) module is introduced to compute the degree of correlation of description vectors from one image to another counterpart. Then, to enhance the relationship between relevant local features of image pairs, the attentional graph neural network (AGNN) is introduced, and the Sinkhorn algorithm is used to match them; finally, the local feature matching results between image pairs are output. The experimental results show that, compared with the existed algorithms, the proposed method enhances the robustness of local features of varying sights, performs better in terms of homography estimation, matching precision, and recall, and when meeting the requirements of the visual localization system to the environment, the end-to-end network tasks can be realized.

Funder

Project of National Funding, PRC

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference32 articles.

1. Task allocation and route planning of multiple UAVs in a marine environment based on an improved particle swarm optimization algorithm

2. Distinctive Image Features from Scale-Invariant Keypoints

3. Machine learning for high-speed corner detection;E. Rosten

4. Surf: speeded up robust features;H. Bay

5. Brief: binary robust independent elementary features;M. Calonder

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3