Subthreshold Periodic Signal Detection by Bounded Noise-Induced Resonance in the FitzHugh–Nagumo Neuron

Author:

Yao Yuangen12,Yang Lijian3,Wang Canjun4,Liu Quan1,Gui Rong1,Xiong Juan1,Yi Ming1ORCID

Affiliation:

1. Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, China

2. Institute of Applied Physics, Huazhong Agricultural University, Wuhan, China

3. Department of Physics and Institute of Biophysics, Central China Normal University, Wuhan, China

4. Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji, China

Abstract

Neurons can detect weak target signals from complex background signals through stochastic resonance (SR) and vibrational resonance (VR) mechanisms. However, random phase variation of rapidly fluctuating background signals is generally ignored in classical VR or SR studies. Here, the rapidly fluctuating background signals are modeled by bounded noise with random rapidly fluctuating phase derived from Wiener process. Then, the influences of bounded noise on the weak signal detection are discussed in the FitzHugh–Nagumo (FHN) neuron. Numerical results reveal the occurrence of bounded noise-induced single- and biresonance as well as a transition between them. Randomness in phase can enhance the adaptability of neurons, but at the cost of signal detection performance so that neurons can work in more complex environments with a wider frequency range. More interestingly, bounded noise with appropriate parameters can not only optimize information transmission but also simultaneously reduce energy consumption. Finally, the potential mechanism of bounded noise is explained.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3