Seepage Behavior of Earth Dams Considering Rainfall Effects

Author:

Lee Jong-Wook1,Kim Jiseong2,Kang Gi-Chun3ORCID

Affiliation:

1. Infrastructure Research Center, K-Water Institute, 200 Sintanjin-ro, Daedeok-gu, Daejeon 306-711, Republic of Korea

2. Department of Cadastre and Civil Engineering, Vision College of Jeonju, 235 Cheonjam-ro, Wansan-gu, Jeonju, Jeollabuk-do 55069, Republic of Korea

3. Department of Civil Engineering, Engineering Research Institute, Gyeongsang National University, 501 Jinjudero, Jinju, Gyeongsangnam-do 52828, Republic of Korea

Abstract

More than 60% of annual rainfall in Korea is concentrated during the monsoon season from June to August because of the climate characteristics of East Asia. In general, reservoir water levels sharply rise during this period and rock-fill dams are exposed to various types of damages such as soil erosion and piping related to seepage problems. However, the detection of seepage problems is generally more difficult because rainfall directly flows into a V-notch weir according to a downstream shell in which seepage rates can be measured downstream. In this paper, rainfall is filtered out from the measured seepage rates to evaluate the effects of rainfall by using a digital filtering method for two large rock-fill dams (Dams A and B). Seepage behavior for these two large rock-fill dams was estimated as a steady-state condition. It has been proven that with the application of a digital filter which filters out rainfall-induced infiltration into a downstream shell from a measured seepage flow would make analyzing the seepage behavior of dams more effective. This also shows that consideration for any rainfall effect on the seepage behavior of earth dams is very important. The seepage rate of Dam A was not significantly affected by rainfall because the seepage water was collected inside the dam body and was transferred to a V-notch weir located downstream from the dam through a steel pipe. On the contrary, the seepage rate of Dam B was greatly influenced by rainfall in the rainy season. Also, the permeability of the core zones for Dams A and B was estimated at 8.5 × 10−5 cm/sec and 2.7 × 10−5 cm/sec, respectively, by a simplified method.

Funder

Gyeongsang National University

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3