Multidimensional Heterogeneous Network Link Adaptation Based on Mobile Environment

Author:

Li Wenfeng1ORCID

Affiliation:

1. School of Software Engineering, JinLing Institute of Technology, Nanjing 211169, China

Abstract

With the development of communication technology, train control operation system develops gradually, which significantly improves the reliability and efficiency of train operation. The current mobile Internet has gradually highlighted the many limitations of the mobile Internet in the high-speed mobile environment, which seriously deteriorate the service quality and user experience, and cause a waste of resources. In order to meet the real-time requirements of network communication resource scheduling in the mobile environment, aiming at the multidimensional dynamic adaptation framework constructed in a mobile environment, a service and network adaptation mechanism based on link failure state prediction is proposed in the paper. First, cross-layer theoretical analysis and actual data analysis are combined to construct a wireless link failure probability model. Then, reliable transmission requirements and transmission overhead are applied to optimize goals. Finally, simulation experiments are carried out according to the railway network data to evaluate the E-GCF adaptation algorithm. The experiment results show that compared with the current mainstream algorithms, the prediction accuracy of this adaptation algorithm is improved by 25%. The execution time of the algorithm is reduced by 9.6 seconds and the successful submission rate is as high as 99.99%. The advantages of the algorithm are significantly superior other algorithms. It proves that the research method of this paper can effectively improve the satisfaction rate and utility value of reliable transmission, as well as enhance the throughput performance. It solves the adaptation problems of frequent switching and low utilization of heterogeneous networks in a mobile environment, which contributes to the high-quality communication service of mobile network.

Funder

Jinling Institute of Technology

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3