Optimization of Artistic Image Segmentation Algorithm Based on Feed Forward Neural Network under Complex Background Environment

Author:

Li Yibiao1ORCID

Affiliation:

1. School of Arts and Tourism, Lianyungang Technical College, Lianyungang 222000, China

Abstract

Based on the theory and application, this paper discusses the optimization of art image segmentation algorithm based on FFNN (Feed Forward Neural Network). In this paper, residual units are used in the corresponding stages of encoder and decoder, and feature information of several convolution layers in each convolution stage of encoder is extracted at the same time. And the feature pyramid module is used to extract multiscale features from the feature map of the last convolution stage in the encoder. Finally, pixel by pixel additions combine the previously mentioned feature information into the corresponding layer of the decoder. Additionally, an improved weight adaptive algorithm based on feature preservation is suggested in this paper, which addresses the issue that the conventional image segmentation algorithm is noise-sensitive. The adaptive connection weight mechanism is also introduced. The accuracy and recall rates of this optimization algorithm can both reach 96.574%, according to the results of 50% cross-validation. All the segmentation performance evaluation indexes of this algorithm are higher than the existing main algorithms. Moreover, the algorithm takes a short time, does not need too much manual intervention, and can effectively segment artistic images. The optimization algorithm in this paper has certain reference significance for the related research of artistic image segmentation.

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3