Autonomous Classification and Decision-Making Support of Citizen E-Petitions Based on Bi-LSTM-CNN

Author:

Sun Fengmei1ORCID,Zuo Yi23ORCID

Affiliation:

1. Collaborative Innovation Center for Transport Studies, Dalian Maritime University, Dalian 116026, China

2. Collaborative Innovation Center of Maritime Big Data & Shipping Artificial General Intelligence, Navigation College Dalian Maritime University, Dalian 116026, China

3. The Research Institute for Socionetwork Strategies, Kansai University, Osaka 5648680, Japan

Abstract

The increasing number of e-petition services requires accurate calculation methods to perform rapid and automated delivery. Automated text classification significantly reduces the burden of manual sorting, improving service efficiency. Moreover, existing text classification methods focus on improving sole models with an insufficient exploration of hybrid models. Moreover, existing research lacks combinatorial model selection schemes that yield satisfactory performance for petition classification applications. To address these issues, we propose a hybrid deep-learning classification model that can accurately classify the responsible department of a petition. First, e-petitions were collected from the Chinese bulletin board system and then cleaned, segmented, and tokenized into a sequence of words. Second, we employed the word2vec model to pretrain an embedding matrix based on the e-petition corpus. An embedding matrix maps words into vectors. Finally, a hybridized classifier based on convolutional neural networks (CNN) and bidirectional long short-term memory (Bi-LSTM) is proposed to extract features from the title and body of the petition. Compared with baseline models such as CNN, Bi-LSTM, and Bi-LSTM-CNN, the weighted F1 score of the proposed model is improved by 5.82%, 4.31%, and 1.58%, respectively. Furthermore, the proposed automated petition classification decision support system is available on the e-petition website and can be used to accurately deliver petitions and conduct citizen opinion analysis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3