Effects of Alumina Films on N-Doped Carbon Nanotubes/Graphene Composites as Anode Materials of Lithium-Ion Batteries

Author:

Lin Chuen-Chang1ORCID,Hsu Shu-Pei1,Chen Guang-Jhong1

Affiliation:

1. Department of Chemical & Materials Engineering, National Yunlin University of Science and Technology, 123 University Road Sec. 3, Douliu, Yunlin 64002, Taiwan

Abstract

A carbon nanotubes/graphene composite is grown on nickel foil without additional catalysts by one-step ambient pressure chemical vapor deposition (CVD). Next, the carbon nanotubes/graphene composite is modified by radio frequency (RF) nitrogen plasma. Finally, to improve its initial coulombic efficiency/electrochemical stability, lower potential during the charge process (coin cell), and boost potential during the discharge process (lithium-ion battery), alumina is deposited onto the N-doped carbon nanotubes/graphene composite by RF magnetron sputtering at different power levels and periods of time. The charge specific capacity (597 mAh/g) and initial coulombic efficiency (81.44% > 75.02% for N-doped carbon nanotubes/graphene) of Al2O3/N-doped CNTs/graphene for the coin cell reached a maximum at the best sputtering condition ( power = 65 W and time = 30 min ). Al2O3/N-doped CNTs/graphene (the best sputtering condition) exhibits higher initial coulombic efficiency (79.8%) compared with N-doped CNTs/graphene (initial coulombic efficiency: 74.3%) for the lithium-ion battery. Furthermore, the achievement fraction (about 70%) of full charge capacity (coin cell) for Al2O3/N-doped carbon nanotubes/graphene (the best sputtering condition) is higher than that (about 30%) for N-doped carbon nanotubes/graphene at a voltage lower than about 0.25 V. Moreover, it also shows a little higher electrochemical stability (coin cell) of charge capacity for Al2O3/N-doped carbon nanotubes/graphene (the best sputtering condition) in comparison with N-doped carbon nanotubes/graphene and Al2O3/N-doped CNTs/graphene (the best sputtering condition) exhibits better cyclic stability (lithium-ion battery) of discharge capacity compared with N-doped CNTs/graphene.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3