Affiliation:
1. Department of Chemical & Materials Engineering, National Yunlin University of Science and Technology, 123 University Road Sec. 3, Douliu, Yunlin 64002, Taiwan
Abstract
A carbon nanotubes/graphene composite is grown on nickel foil without additional catalysts by one-step ambient pressure chemical vapor deposition (CVD). Next, the carbon nanotubes/graphene composite is modified by radio frequency (RF) nitrogen plasma. Finally, to improve its initial coulombic efficiency/electrochemical stability, lower potential during the charge process (coin cell), and boost potential during the discharge process (lithium-ion battery), alumina is deposited onto the N-doped carbon nanotubes/graphene composite by RF magnetron sputtering at different power levels and periods of time. The charge specific capacity (597 mAh/g) and initial coulombic efficiency (81.44% > 75.02% for N-doped carbon nanotubes/graphene) of Al2O3/N-doped CNTs/graphene for the coin cell reached a maximum at the best sputtering condition (
and
). Al2O3/N-doped CNTs/graphene (the best sputtering condition) exhibits higher initial coulombic efficiency (79.8%) compared with N-doped CNTs/graphene (initial coulombic efficiency: 74.3%) for the lithium-ion battery. Furthermore, the achievement fraction (about 70%) of full charge capacity (coin cell) for Al2O3/N-doped carbon nanotubes/graphene (the best sputtering condition) is higher than that (about 30%) for N-doped carbon nanotubes/graphene at a voltage lower than about 0.25 V. Moreover, it also shows a little higher electrochemical stability (coin cell) of charge capacity for Al2O3/N-doped carbon nanotubes/graphene (the best sputtering condition) in comparison with N-doped carbon nanotubes/graphene and Al2O3/N-doped CNTs/graphene (the best sputtering condition) exhibits better cyclic stability (lithium-ion battery) of discharge capacity compared with N-doped CNTs/graphene.
Funder
Ministry of Science and Technology of the People's Republic of China
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献