Topology Optimization of Interactive Visual Communication Networks Based on the Non-Line-of-Sight Congestion Control Algorithm

Author:

Liu Boya1ORCID,Zhou Xiaobo2

Affiliation:

1. Department of Journalism and Media, Chongqing Normal University, Chongqing 401331, China

2. Film and Television Animation Department, Sichuan Fine Arts Institute, Chongqing 401331, China

Abstract

In this paper, an in-depth study of interactive visual communication of network topology through non-line-of-sight congestion control algorithms is conducted to address the real-time routing problem of adapting to dynamic topologies, and a delay-constrained stochastic routing algorithm is proposed to enable packets to reach GB within the delay threshold in the absence of end-to-end delay information while improving network throughput and reducing network resource consumption. The algorithm requires each sending node to select an available relay set based on the location of its neighbor nodes and channel state and computes transfer probabilities for each node in the relay set combining the remaining delay of the packet with the distance from the relay node to GB. Based on the obtained transfer probability and local channel state, the sending node passes the packet to the relay node. The convergence of the algorithm is proved and its performance is verified by simulation. The first part of the algorithm is based on the greedy algorithm to deploy and locate the network flying platform nodes with the goal of efficient coverage of the network flying platform nodes, considering the ground base station services. As the delay on each link varies due to the change of channel state, the source and relay nodes asynchronously update the data generation rate and the pairwise parameters based on the received local information and use the obtained optimal values to pass the packets to GB.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the application of digital media technology in dynamic visual communication design;Applied Mathematics and Nonlinear Sciences;2024-01-01

2. Research on Visual Communication Optimization Method based on Simulation Technology;2023 4th International Conference for Emerging Technology (INCET);2023-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3