Breast Tumor Microcalcification Induced by Bone Morphogenetic Protein-2: A New Murine Model for Human Breast Tumor Diagnosis

Author:

Hajibeigi Asghar1,Nasr Khaled12,Udayakumar Durga1,Nham Kien1,Lenkinski Robert E.12ORCID

Affiliation:

1. Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390, USA

2. Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA

Abstract

Widespread use of screening mammography has recently increased the detection of breast microcalcifications. These nonpalpable microcalcifications with specific features in breast tissues are clinically considered an early indicator of breast carcinoma. Our goal in this study was to develop a murine breast microcalcification model for optimizing in vivo imaging. Recombinant human BMP-2 was expressed in E. coli, and the purified bioactive protein was used as inducing factor for the production of breast microcalcifications in a murine animal model. Syngeneic breast tumors were obtained by injection of MDA-MB-231 human breast cancer cells with Matrigel into the mammary fat pad of female nude mice. Different doses of bioactive rhBMP-2 were administered either as single or multiple intraperitoneal injections or directly into tumor on a weekly basis. Three weeks after the first injection of rhBMP-2, the microcalcification of breast tumor was detected by microcomputed tomography followed by intravenous injection of radiotracer [18F] Sodium fluoride for positron emission tomography imaging. Our findings indicate that rhBMP-2 induced microcalcifications of breast tumor by both systemic and direct injection of rhBMP-2 into tumors in a dose-dependent manner. Although little is known about the molecular mechanism of microcalcification, here we report a new murine model of human breast tumor induced microcalcification by rhBMP-2 to optimize in vivo imaging methods and to study the role of BMP-2 as a mediator of pathological mineralization and bone-like microcalcification formation in breast tumor. This BMP-2-induced microcalcification model may allow us to discriminate the type of microcalcification in tumors and to perform quantitative analysis on the calcification as a new detection strategy for early identification of pathological mineralization of breast tissues in women.

Funder

University of Texas Southwestern Medical Center

Publisher

Hindawi Limited

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3