Cloning and Expression of the Organophosphate Pesticide-Degradingα-βHydrolase Gene in Plasmid pMK-07 to Confer Cross-Resistance to Antibiotics

Author:

Rangasamy Kirubakaran1,Athiappan Murugan1ORCID,Devarajan Natarajan2,Parray Javid A.3,Shameem Nowsheen4,Aruljothi K. N.5ORCID,Hashem Abeer67,Alqarawi Abdulaziz A.8,Abd_Allah Elsayed Fathi8ORCID

Affiliation:

1. Department of Microbiology, Periyar University, Salem, Tamil Nadu, India

2. Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India

3. Department of Environmental Science, Government SAM Degree College Budgam, Jammu & Kashmir 191111, India

4. Department of Environmental Science, Cluster University Srinagar, Jammu & Kashmir 190001, India

5. Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu, India

6. Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

7. Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza, Egypt

8. Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

Abstract

Pesticide residual persistence in agriculture soil selectively increases the pesticide-degrading population and transfers the pesticide-degrading gene to other populations, leading to cross-resistance to a wide range of antibiotics. The enzymes that degrade pesticides can also catabolize the antibiotics by inducing changes in the gene or protein structure through induced mutations. The present work focuses on the pesticide-degrading bacteria isolated from an agricultural field that develop cross-resistance to antibiotics. This cross-resistance is developed through catabolic gene clusters present in an extrachromosomal plasmid. A larger plasmid (236.7 Kbp) isolated fromBacillussp. was sequenced by next-generation sequencing, and important features such asα-βhydrolase, DNA topoisomerase, DNA polymerase III subunit beta, reverse transcriptase, plasmid replication rep X, recombination U, transposase, and S-formylglutathione hydrolase were found in this plasmid. Among these, theα-βhydrolase enzyme is known for the degradation of organophosphate pesticides. The cloning and expression of theα-βhydrolase gene imply nonspecific cleavage of antibiotics through a cross-resistance phenomenon in the host. The docking ofα-βhydrolase with a spectrum of antibiotics showed a high G-score against chloramphenicol (−3.793), streptomycin (−2.865), cefotaxime (−5.885), ampicillin (−4.316), and tetracycline (−3.972). This study concludes that continuous exposure to pesticide residues may lead to the emergence of multidrug-resistant strains among the wild microbial flora.

Funder

Periyar University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3