Replaceable Displacement‐Amplifying Rotary Friction Damper: Experimental and Numerical Investigation

Author:

Zhang XichengORCID,Liu LeileiORCID,Qiu Zhihao,Cui Lanhao,Hu Chengming

Abstract

Timber structures are vulnerable to failure and collapse under seismic action. To improve the seismic performance of such structures, a replaceable displacement amplification rotary friction damper was proposed and designed. Six specimens were fabricated, each varying in pretension strains and employing three different composite friction materials as control parameters, followed by low cyclic loading tests. The study investigated the working mechanism, hysteresis performance, energy dissipation capacity, performance stability, and displacement amplification effect of the dampers. A finite element model was developed to analyze the hysteresis performance of the damper and evaluate the impact of various parameters on its overall effectiveness. Furthermore, a comparative analysis of the damper’s hysteresis characteristics was conducted. The theoretical calculations and finite element analysis were validated using experimental results, showing a relative error within 10%. The specimens demonstrated a notable displacement amplification capability, which increased as the intermediate connector length decreased. By reducing the length by 200 mm, the maximum damping force could be amplified by 5.5 times, while the nodal rotation values increased by 3.92 times. Additionally, for every 50 με increment in pretension strain, energy consumption increases by an average of 148%, and for each unit increase in the friction coefficient, energy consumption increases by an average of 172%.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3