Affiliation:
1. Institute of Microelectronics, Chinese Academy of Sciences (IMECAS), Beijing 100029, China
Abstract
A novel T-shaped piezoelectric ZnO cantilever sensor for chem/bio-detection is designed and fabricated with MEMS technology. By using Rayleigh-Ritz method, the fundamental resonant frequency formula of T-shaped cantilevers is deduced for the first time and is validated by simulation results and experimental results. From this formula, we can easily find the superiority of adopting T-shape for the cantilevers. The complete process of the cantilever sensor is then successfully developed. The cantilever sensor is actuated by a layer of high-quality ZnO film with preferred (002) orientation, which is evaluated by SEM and XRD. The key step of the process is protecting the ZnO film from KOH etching by a novel and effective method, which has rarely appeared in the literature. Finally, this cantilever sensor is measured by a network analyzer, and it has a fundamental resonant frequency of 24.60 kHz. The cantilever sensor developed in this study illustrates the feasibility and potential for many miniaturized sensor applications.
Subject
Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献