Dance Evaluation Based on Movement and Neural Network

Author:

Lei Yan1ORCID,Li Xin1,Chen Yi Jiao1

Affiliation:

1. Arts College of Sichuan University, Chengdu, Sichuan 610000, China

Abstract

In terms of music-driven dance movement generation, the music movement matching model and the statistical mapping model have poor fit between the dance generated by the model and the music self. The generated dance movement is incomplete, and the smoothness and rationality of long-term dance sequences are low. The new dance moves and other related issues cannot be generated by the traditional model. In order to address these issues, we design a dance generation algorithm based on movements and neural networks that will extract the mapping between voice and movement features. In the first stage, where the prosody features and audio beat features extracted from music are used as music features, and the coordinates of key points of the human body extracted from dance videos are used as motion features for training. In the second stage, the basic mapping of music and dance movements are realized through the generator module of the model to generate a smooth dance posture; the consistency of dance and music is realized through the discriminator module; the audio characteristics are more possessed through the Autoencoder module representative. In the third and final stage, the modified version of the model transforms the dance posture sequence into a realistic version of the dance. Finally, a realistic version of the dance that fits the music is obtained. The experimental data is obtained from dance videos on the Internet, and the experimental results are analyzed from five aspects: loss function value, comparison of different baselines, evaluation of sequence generation effect, user research, and quality evaluation of real-life dance videos. The results show that the proposed dance generation model has a good effect in transforming into realistic dance videos.

Publisher

Hindawi Limited

Subject

General Mathematics

Reference13 articles.

1. Obamanet: photo-realistic lip-sync from text;R. Kumar,2017

2. Framewise phoneme classification with bidirectional LSTM and other neural network architectures

3. You said that?;J. S. Chung,2017

4. Speech-driven facial reenactment using conditional generative adversarial net work;S. A. Jalalifar,2018

5. Generative adversarial nets;I. Goodfellow

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3