Comparison of Frequency Domain and Time-Domain Methods for Aeromechanical Analysis

Author:

Rahmati M. T.1

Affiliation:

1. Department of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ, UK

Abstract

Unsteady flow around an oscillating plate cascade and that through a single compressor rotor subject to vibration have been computationally studied, aimed at examining the predictive ability of two low fidelity frequency methods compared with a high fidelity time-domain solution method for aeroelasticity. The computational solutions demonstrate the capabilities of the frequency domain methods compared with the nonlinear time-domain solution method in capturing small perturbations in the unsteady flow. They also show the great advantage of significant CPU time saving by the frequency methods over the nonlinear time method. Comparisons of two different frequency methods, nonlinear harmonic and phase solution method, show that these methods can produce different results due to the differences in numeric and physical conditioning. The results obtained using phase solutions method are in better agreement with the nonlinear time-domain solution. This is because the same numeric and physical conditioning are used in both the nonlinear time-domain method and phase solution frequency domain method.

Funder

Siemens Industrial Turbomachinery Ltd., Lincoln

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3