A New Method for Feature Extraction and Classification of Single-Stranded DNA Based on Collaborative Filter

Author:

Yan Bingyong1ORCID,Cui Haixu1ORCID,Fu Haitao2,Zhou Jiale13,Wang Huifeng1ORCID

Affiliation:

1. Key Laboratory of Advanced Control & Optimization for Chemical Process of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China

2. School of Electronic Information Engineering, Beijing Institute of Technology, Beijing 100081, China

3. Key Laboratory for Advanced Materials & Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China

Abstract

The traditional support vector machine algorithm is not enough to classify single-stranded DNA molecules, so this paper proposes an improved threshold extraction algorithm based on collaborative filter for the classification of single-stranded DNA. Firstly, according to the different characteristic curves of the blocking current signals formed by the four bases (A, T, C, and T) that make up DNA molecules crossing the nanopore, the collaborative filter feature extraction algorithm with improved threshold is proposed. Then, the feature information is reconstructed and sent to the SVM classifier for training. Finally, the unfiltered, collaborative filter, improved threshold collaborative filter, and Bessel filter data are, respectively, extracted and sent to the SVM classifier for classification and comparison research. The experimental results show that the improved collaborative filter algorithm has higher accuracy in single-stranded DNA molecular classification.

Funder

National Major Scientific Research Instrument Development Project

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3