Characterization of Odontogenic Differentiation from Human Dental Pulp Stem Cells Using TMT-Based Proteomic Analysis

Author:

Xiao Xijuan1,Xin Caihong1,Zhang Yuqin1,Yan Jie1,Chen Zhao23,Xu Huiyong3,Liang Min4,Wu Buling3ORCID,Fang Fuchun23ORCID,Qiu Wei23ORCID

Affiliation:

1. Yuncheng Stomatological Hospital, Yuncheng Stomatological Health School, South Section of Yuxi Road, Yuncheng 044000, China

2. Guangdong Provincial Key Laboratory of Oral Diseases, Guangzhou 510055, China

3. Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China

4. Department of Periodontology, Guanghua School and Hospital of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China

Abstract

Background. The repair of dental pulp injury relies on the odontogenic differentiation of dental pulp stem cells (DPSCs). To better understand the odontogenic differentiation of DPSCs and identify proteins involved in this process, tandem mass tags (TMTs) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were applied to compare the proteomic profiles of induced and control DPSCs. Methods. The proteins expressed during osteogenic differentiation of human DPSCs were profiled using the TMT method combined with LC-MS/MS analysis. The identified proteins were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Then, a protein-protein interaction (PPI) network was constructed. Two selected proteins were confirmed by western blotting (WB) analysis. Results. A total of 223 proteins that were differentially expressed were identified. Among them, 152 proteins were significantly upregulated and 71 were downregulated in the odontogenic differentiation group compared with the control group. On the basis of biological processes in GO, the identified proteins were mainly involved in cellular processes, metabolic processes, and biological regulation, which are connected with the signaling pathways highlighted by KEGG pathway analysis. PPI networks showed that most of the differentially expressed proteins were implicated in physical or functional interaction. The protein expression levels of FBN1 and TGF-β2 validated by WB were consistent with the proteomic analysis. Conclusions. This is the first proteomic analysis of human DPSC odontogenesis using a TMT method. We identified many new differentially expressed proteins that are potential targets for pulp-dentin complex regeneration and repair.

Funder

Southern Medical University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3