Estimating Performance Efficiency of Mining and Extracting Sectors Using DEA Models: The Case of Jordan

Author:

Jaber Jamil J.1ORCID,Beldjilali Fatiha2,Shehadeh Ali A.1,Hamadneh Nawaf N.3ORCID,Saleh Mohammad1,Tahir Muhammad4ORCID,Al Wadi S.1

Affiliation:

1. Department of Finance, Faculty of Business, The University of Jordan, Aqaba, Jordan

2. Department of Commercial Sciences, Faculty of Economic, Commercial and Management Sciences, University of Ibn Khaldoun Tiaret, BP P 78, Zaâroura 14000, Tiaret, Algeria

3. Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi Arabia

4. College of Computing and Informatics, Saudi Electronic University, Riyadh, Saudi Arabia

Abstract

In this study, we estimated the performance efficiency of the Jordanian mining and extracting sector based on Data Envelopment Analysis (DEA). The utilized dataset includes 6 out of 15 corporations that reflect around 90% of the total market capitalization under the mining and extracting sector in the Amman Stock Exchange (ASE). The sample consists of 126 observations from 2000 to 2020. It should be noted that estimating the efficiency of the sector based on time series for each company is not mentioned in the literature review. Therefore, we applied BCC (Banker–Charnes–Cooper) models to estimate performance efficiency and compared between input and output models under DEA. We also estimated the average performance efficiency of the sector to detect weaknesses/strengths among companies. The market capitalization and the operating revenue are used to evaluate the companies’ performance. In addition to the performance variables as output to the DEA models, the current assets, non-current assets, operating expenses, and general administrative expenses are also used as input variables under the DEA models. This study also examined the effect of Gross Domestic Product (GDP) growth and Return on Assets (ROA) on performance efficiency scores for BCC models. In the results, we found that there are differences in performance efficiency across time series in each company based on dynamic BCC models. It is observed that the performance efficiency of NAST Company is better than the other companies based on BCC (Input/output). The GDP growth and ROA reveal the effect on efficiency performance under BCC models. The proposed model can be used to improve the performance efficiency of companies in stock exchange markets.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3