Digital Twins by Physical Education Teaching Practice in Visual Sensing Training System

Author:

Liu Xinran1,Jiang Ji1ORCID

Affiliation:

1. Sports Faculty Department, Liaoning University, Shenyang, Liaoning, China

Abstract

The paper expects to improve the efficiency and intelligence of somatosensory recognition technology in the application of physical education teaching practice. Firstly, the combination of induction recognition technology and the Internet is used. Secondly, through the Kinect sensor, bone data are acquired. Finally, the hidden Markov model (HMM) is used to simulate the experimental data. On the simulation results, a gait recognition algorithm is proposed. The gait recognition algorithm is used to identify the motion behaviour, and the results are displayed in the Web (World Wide Web) end built by the cloud server. Meantime, in view of the existing problems in the practice of physical education, combined with the establishment and operation of the Digital Twins (DTs) system, the camera source recognition architecture is carried out since the twin network and the two network branches share weights. This paper analyses these problems since the application of somatosensory recognition technology and puts forward the improvement methods. For the single problem of equipment in physical education, this paper puts forward the monitoring and identification function of the cloud server. It is to transmit data through Hypertext Transfer Protocol (HTTP) and locate and collect data through a monitoring terminal. For the lack of comprehensiveness and balance of sports plans, this paper proposes a scientific training plan and process customization based on Body Mass Index (BMI), analyses real-time data in the cloud, and makes scientific customization plans according to different students’ physical conditions. Moreover, 25 participants are invited to carry out the exercise detection and analysis experiment, and the joint monitoring of their daily movements is tested. This process has completed the design of a feasible and accurate platform for information collection and processing, which is convenient for managers and educators to comprehensively and scientifically master and manage the physical level and training of college students. The proposed method improves the recognition rate of the camera source to some extent and has important exploration significance in the field of action recognition.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference25 articles.

1. Kinect-Based Badminton Motion Analysis Using Intelligent Adaptive Range of Movement Index

2. Exploration on the reform of college physical education curriculum and the promotion of students’ physical health;S. X. Zuo;Industrial & Science Tribune,2021

3. Foreign research progress on the influence of screen time on Teenagers’ physical health in recent 10 years;L. Wang;Journal of Physical Education,2016

4. Development of virtual reality cycling training and assessment system to investigate the effect of cycling motions in rehabilitative training;F. Yusuke;The Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec),2017

5. Human model structure segmentation based on semantic and geometric features;L. Li;Application Research of Computers,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3