Application of Artificial Intelligence Elements and Multimedia Technology in the Optimization and Innovation of Teaching Mode of Animation Sound Production

Author:

He Aijun1ORCID

Affiliation:

1. School of Art and Design, Lanzhou Jiaotong University, Lanzhou, China

Abstract

Nowadays, with the rapid development of multimedia technology and computer information processing, the data of multimedia information presents explosive growth. At present, the method of using artificial recognition of sound materials is inefficient, and an automatic recognition and classification system of sound materials is needed. To improve the accuracy of sound recognition, two algorithm models are established to identify and compare the sound materials, which are the hidden Markov model (HMM) and back propagation neural network (BPNN) model. Firstly, HMM is established, and the sound material is randomly selected as the test sample. The comparison between the expected classification and the actual is tested, and the recognition rate of each classification is got. The final average recognition rate is 61%. The anti-interference characteristics of the training HMM are tested, and the identification rate of the training model is selected in 6 types of signal-to-noise ratio (SNR) environments. The recognition rate of the training model has an obvious downward trend with the decrease of the SNR. Secondly, the BPNN model is built, and 200 BPNN training experiments are conducted. The training model with the highest average recognition rate is selected as the experimental model. The average recognition rate of the final model is higher than 90%. The expression ability and stability of the trained model are simulated after the new sample is introduced, and the anti-interference performance of the model is tested in different environments of SNR. The results of performance test are good, and only the recognition rate of complex types of some sound sources decreased. Finally, the accuracy of the HMM in the experiment is not as high as that obtained by BPNN. Therefore, the training method of BPNN has a greater advantage in both recognition accuracy and recognition efficiency for the studied sound. It provides a reference for automatic recognition of sound materials.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3