Image Recognition of Pledges of Capital Stock in Small- and Medium-Sized Enterprises Based on Partial Differential Equations

Author:

Zhou Dehui1ORCID

Affiliation:

1. School of Finance, Xi’an Eurasia University, Xi’an, Shaanxi 710065, China

Abstract

Image recognition is one of the core research directions in the field of computer vision research, which can be divided into general image recognition and fine-grained image recognition. General image recognition refers to the recognition of different types of objects; fine-grained image recognition refers to the recognition of different subclasses in the same broad class of objects, such as SME financing inventory pledge image recognition. In this paper, we propose a partial differential equation-based image recognition method for SME financing inventory pledges and conduct detailed analysis and experiments. Compared with general images, partial differential equation-based SME financing inventory pledges image recognition is difficult to recognize due to data characteristics such as small differences in features between classes, large differences in features within classes, and a small percentage of targets in the image. To address the problem that existing methods ignore the role of shallow features on fine-grained image recognition, this paper proposes a fine-grained image recognition method based on partial differential equations. By analyzing the important role of shallow features for fine-grained image recognition, a feature fusion method with adaptive weights is proposed. Using this method to fuse shallow and high-level semantic features for recognition, the role of shallow features in fine-grained image recognition is fully exploited. In addition, the proposed method does not change the order of magnitude of the model parameters and is highly transferable. The relevant experimental results verify the effectiveness of the proposed method.

Funder

Shaanxi Province Social Science Foundation

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3