Study on the Rock Fracture during Fluid Injection Using a Coupled Flow-Stress-Damage (FSD) Model: Insight into the Stress Shadow Effect

Author:

Li Xueliang1234ORCID,Sun Guang23

Affiliation:

1. China Coal Research Institute, Beijing 100013, China

2. China Coal Science and Technology Ecological Environment Technology Co., Ltd., Beijing 100013, China

3. China Coal Technology & Engineering Group Co., Ltd., Beijing 100013, China

4. Tiandi Science and Technology Co., Ltd., Beijing 100013, China

Abstract

In order to investigate the influence of pore pressure on hydraulic fracturing behavior in the local and whole model, the coupled flow-stress-damage (FSD) analysis system RFPA-Flow was used to study the influence of rock heterogeneity, natural stress ratio, double-hole spacing, and water pressure gradient on the stress shadow effect. The numerical results show that the tensile crack induced by pore water pressure is significantly affected by the pore water pressure and water pressure gradient. The larger the pore pressure gradient is, the more asymmetrical the crack development pattern and the smaller the instability pressure of the model. In addition, the shape of hydraulic fracture becomes much more irregular with the increase in rock heterogeneity. The number and shape of tip microcracks under the influence of local water pressure are closely related to the homogeneity of rock. Moreover, when the natural stress difference is large, the hydraulic fracture propagates parallel to the maximum principal stress; when the stress field is close and the spacing between two holes is less than 5 times the diameter, the propagation direction of hydraulic fractures between holes is perpendicular to the maximum principal stress. It is found that no hydraulic fractures occur between the two holes when the distance between holes is greater than 5 times the diameter.

Funder

Beijing Science and Technology Planning Project

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3