Electromagnetic Scattering by Multiple Columns Partially Buried in a Ground Plane

Author:

Ren Xin-Cheng1,Zhao Ye1,Yang Peng-Ju1ORCID,Zhu Xiao-Min1

Affiliation:

1. School of Physics and Electronic Information, Yanan University, Yan’an 716000, China

Abstract

Wideband electromagnetic scattering from multiple objects partially buried beneath rough earth soil surfaces is an important topic during recent years due to its extensive applications in several fields, such as ground remote sensing, ground penetrating radar applications, and target identification. Due to the advantages of finite-difference time-domain (FDTD) method in calculating the wideband electromagnetic scattering from rough surface in the presence of multiple objects, the FDTD method under ultrawideband (UWB) Gaussian pulse wave incidence is utilized in the present study for analyzing the frequency response of rough soil surfaces with periodically distributed multiple rectangular cross-section columns buried partially. In this paper, the dielectric property of the actual land surface is expressed using the four-component model, and the actual rough land surface is simulated utilizing Monte Carlo method with exponential correlation function. The emphasis of the present study is on analyzing the wideband response signatures of composite backscattering coefficient varying with frequency on the basis of extensive numerical simulations, in particular for calculating and discussing in detail the influence of the root-mean-square height and the correlation length of rough soil surface, soil moisture, the length and the width of the rectangular cross-section column, separation distance, burial depth, and tilt angle on the composite backscattering coefficient.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3