Integration and Fusion of Geologic Hazard Data under Deep Learning and Big Data Analysis Technology

Author:

He Feng1,Liu Chunxue1ORCID,Liu Hongjiang2

Affiliation:

1. School of Urban and Environmental Sciences, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China

2. School of Tourism, Leshan Normal University, Sichuan, Leshan 614000, China

Abstract

To discuss the analysis and evaluation of highway landslides, the application of data mining methods combined with deep learning frameworks in geologic hazard evaluation and monitoring is explored preliminarily. On the premise of optimizing the processing of landslide images, first, the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) based on the natural statistical characteristics of the spatial domain is introduced, which is initially combined with Super-Resolution Convolutional Neural Network (SRCNN). Then, the AlexNet is fine-tuned and applied to highway landslide monitoring and surveying. Finally, an entropy weight gray clustering evaluation method based on data mining analysis is proposed, and the performances of several methods are verified. The results show that the average score of the BRISQUE algorithm in Image Quality Assessment (IQA) is above 0.9, and the average running time is 0.1523 s. The combination of BRISQUE and SRCNN can improve the image quality significantly. After fine-tuning, the recognition accuracy of AlexNet for landslide images can reach about 80%. The evaluation method based on gray clustering can effectively determine the correlation between soil moisture content and slope angle and thereby be applied to the analysis and evaluation of highway landslides. The results are beneficial to the judgment and assessment of highway landslide conditions, which can be extended to research on other geologic hazards.

Funder

Yunnan Provincial Department of Education

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3