Identifying the Moisture Sources in Different Seasons for Abaya-Chamo Basin of Southern Ethiopia Using Lagrangian Particle Dispersion Model

Author:

Kimo Israel Gebresilasie1ORCID,Cholo Bisrat Elias1ORCID,Lohani Tarun Kumar2ORCID

Affiliation:

1. Faculty of Meteorology and Hydrology, AWTI, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia

2. Faculty of Hydraulic and Water Resources Engineering, AWTI, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia

Abstract

Understanding the sources of precipitation and their impacts is crucial for basin-wide water balance research. Previous research concentrated on the sources of moisture in Ethiopia. The southern part’s moisture sources, however, were not investigated. The primary objective of this study is to trace the source of atmospheric moisture in the Abaya-Chamo sub-basin of southern Ethiopia using numerical water vapor tracers like Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Exploring the possible regions of atmospheric vapor roots and the path of moist air initiating rainfall that reaches the basin was feasible for the year 2018–2020. The anticyclone from the Arabian High, which is positioned in the Arabian and Mediterranean seas, was the primary source of moisture supply in the study area during the Belg (March to May) season, according to the back trajectory cluster analysis results. Additionally, the Indian Ocean adds moisture resulting from Mascarene highs brought by equatorial easterlies. Furthermore, during Kiremt (June to September), air masses from the Congo basin were the potential moisture source region for the study areas in combination with air masses originating from the Mascarene highs, located in the South Indian Ocean, and the St. Helena high, centered in the subtropical southern Atlantic Ocean. This study primarily focuses on the complex dynamics of atmospheric moisture sources around Abaya-Chamo sub-basin of southern Ethiopia, offering insight into seasonal fluctuations and contributing various components. These findings contribute to basin-specific water balance research by filling gaps in the previous studies.

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3