Intraocular Microsurgical Forceps (20, 23, and 25 gauge) Membrane Peeling Forces Assessment

Author:

Velez-Montoya Raul1,Patel Chirag1,Oliver Scott C. N.1,Quiroz-Mercado Hugo2ORCID,Mandava Naresh1,Olson Jeffrey L.1

Affiliation:

1. Department of Ophthalmology, University of Colorado School of Medicine, Rocky Mountain Lions Eye Institute, Aurora, CO 80045, USA

2. Department of Ophthalmology, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO 80204, USA

Abstract

Background. To assess the peeling forces exerted by different calibers of microsurgical forceps on an experimental model of epiretinal membrane.Methods. A model of epiretinal membrane was constructed using thin cellulose paper and heptanes-isopropyl alcohol 1% mixture. The model was mounted on a force censoring device. Subsequently, flaps were created with three different microsurgical forceps of different calibers. We recorded the number of attempts, the duration of the event, and the pushing and the pulling forces during the peeling. The results were compared by a one-way ANOVA and a Fisher unprotected least significant difference test with an alpha value of 0.05 for statistically significance.Results. There was a statistical significant difference on the pulling and pushing forces between the 25 gauge (13.79 mN; −13.27 mN) and the 23 (6.63 mN; −5.76 mN) and 20 (5.02 mN; −5.30 mN) gauge, being greater in the first (P<0.001). There were no differences in the duration of all events, meaning that all the forces were measured within the same period of time.Conclusions. The 25 gauge microsurgical forceps exerted the greatest mechanical stress over our simulated epiretinal membrane model and required more attempts to create a surgical suitable flap. The clinical implication of this finding is still to be determined.

Publisher

Hindawi Limited

Subject

Ophthalmology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tuberculous Scleritis and Multidrug Resistance;Ocular Immunology and Inflammation;2021-01-08

2. A NEW MULTIFUNCTIONAL EXPANDABLE MEMORY LOOP DEVICE;Retina;2015-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3