Predicting Microbursts in the Northeastern U.S. Using Lightning Flash Rates and Simple Radar Parameters

Author:

Jessup Stephen M.1ORCID,Burke Amanda L.1ORCID

Affiliation:

1. Department of the Earth Sciences, The College at Brockport, State University of New York, Brockport, NY, USA

Abstract

Convective storms that produce microburst winds are difficult to predict because the strong surface winds arise in a short time period. Previous research suggests that timing and patterns in cloud height, echo top height, vertical integrated liquid (VIL), intracloud (IC) lightning, and cloud-to-ground (CG) lightning may identify and predict microbursts. Eleven quasi-cellular microburst cases and eight non-microburst severe wind cases were identified from New York, Pennsylvania, and New Jersey between 2012 and 2016. Total lightning data (IC + CG) were obtained from Vaisala’s National Lightning Detection Network (NLDN), and radar parameters were obtained from the Thunderstorm Identification Tracking Analysis and Nowcasting (TITAN) software. Values of VIL, echo top height, and cloud height were tracked through time along with total lightning strikes within a 15 km radius of the storm center. These parameters were plotted with respect to their mean and standard deviation for the 45 minutes leading up to event occurrence. Six of eleven cases featured peaks in total and IC lightning within 25 minutes prior to the microburst. These were the only variables among those examined to peak more than half the time for either the microburst cases or the null cases. The results suggest that microbursts behave somewhat differently than severe wind events, particularly in terms of lightning and VIL timing. The results dispute previous research that suggests that microbursts are highly predictable by the behavior of lightning and radar parameters.

Funder

College at Brockport, State University of New York

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3