Low-Dose Methylmercury-Induced Apoptosis and Mitochondrial DNA Mutation in Human Embryonic Neural Progenitor Cells

Author:

Wang Xinjin1ORCID,Yan Mengling1,Zhao Lina1,Wu Qing1,Wu Chunhua1,Chang Xiuli1ORCID,Zhou Zhijun1ORCID

Affiliation:

1. School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/WHO Collaborating Center for Occupational Health/Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai 200032, China

Abstract

Methylmercury (MeHg) is a long-lasting organic pollutant primarily found in the aquatic environment. The developing brain is particularly sensitive to MeHg due to reduced proliferation of neural stem cell. Although several mechanisms of MeHg-induced apoptosis have been defined in culture models, it remains unclear whether mitochondrial DNA (mtDNA) mutation is involved in the toxic effect of MeHg, especially in the neural progenitor cells. In the present study, the ReNcell CX cell, a human neural progenitor cells (hNPCs) line, was exposed to nanomolar concentrations of MeHg (≤50 nM). We found that MeHg altered mitochondrial metabolic function and induced apoptosis. In addition, we observed that MeHg induced ROS production in a dose-dependent manner in hNPCs cells, which was associated with significantly increased expressions of ND1, Cytb, and ATP6. To elucidate the mechanism underlying MeHg toxicity on mitochondrial function, we examined the ATP content and mitochondrial membrane potential in MeHg-treated hNPCs. Our study showed that MeHg exposure led to decreased ATP content and reduced mitochondrial membrane potential, which failed to match the expansion in mtDNA copy number, suggesting impaired mtDNA. Collectively, these results demonstrated that MeHg induced toxicity in hNPCs through altering mitochondrial function and inducing oxidative damage to mtDNA.

Funder

Shanghai National Natural Science Funds

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3