Severe Maternal Hyperglycemia Exacerbates the Development of Insulin Resistance and Fatty Liver in the Offspring on High Fat Diet

Author:

Song Yong12,Li Jibin2,Zhao Yong2,Zhang Qijuan12,Liu Zhiguo1,Li Jingna1,Chen Xiaoyi1,Yang Zhu1,Yu Chao1,Xiao Xiaoqiu1

Affiliation:

1. Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China

2. Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China

Abstract

Background. Adverse maternal environments may predispose the offspring to metabolic syndrome in adulthoods, but the underlying mechanism has not been fully understood.Methods. Maternal hyperglycemia was induced by streptozotocin (STZ) injection while control (CON) rats received citrate buffer. Litters were adjusted to eight pups per dam and then weaned to standard diet. Since 13 weeks old, a subset of offspring from STZ and CON dams were switched to high fat diet (HFD) for another 13 weeks. Glucose and insulin tolerance tests (GTT and ITT) and insulin secretion assay were performed; serum levels of lipids and leptin were measured. Hepatic fat accumulation and islet area were evaluated through haematoxylin and eosin staining.Results. STZ offspring exhibited lower survival rate, lower birth weights, and growth inhibition which persisted throughout the study. STZ offspring on HFD showed more severe impairment in GTT and ITT, and more profound hepatic steatosis and more severe hyperlipidemia compared with CON-HFD rats.Conclusions. Offspring from diabetic dams would be prone to exhibit low birth weight and postnatal growth inhibition, but could maintain normal glucose tolerance and insulin sensitivity. HFD accelerates development of insulin resistance in the offspring of diabetic dams mainly via a compensatory response of islets.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3