Affiliation:
1. Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
2. Department of Gynaecology and Obstetrics, Maternal and Child Health Hospital of Shangzhou District, Shangluo, Shanxi Province, China
Abstract
Background. The 5-year overall survival rate of ovarian cancer (OC) patients is less than 40%. Hypoxia promotes the proliferation of OC cells and leads to the decline of cell immunity. It is crucial to find potential predictors or risk model related to OC prognosis. This study aimed at establishing the hypoxia-associated gene signature to assess tumor immune microenvironment and predicting the prognosis of OC. Methods. The gene expression data of 378 OC patients and 370 OC patients were downloaded from datasets. The hypoxia risk model was constructed to reflect the immune microenvironment in OC and predict prognosis. Results. 8 genes (AKAP12, ALDOC, ANGPTL4, CITED2, ISG20, PPP1R15A, PRDX5, and TGFBI) were included in the hypoxic gene signature. Patients in the high hypoxia risk group showed worse survival. Hypoxia signature significantly related to clinical features and may serve as an independent prognostic factor for OC patients. 2 types of immune cells, plasmacytoid dendritic cell and regulatory T cell, showed a significant infiltration in the tissues of the high hypoxia risk group patients. Most of the immunosuppressive genes (such as ARG1, CD160, CD244, CXCL12, DNMT1, and HAVCR1) and immune checkpoints (such as CD80, CTLA4, and CD274) were upregulated in the high hypoxia risk group. Gene sets related to the high hypoxia risk group were associated with signaling pathways of cell cycle, MAPK, mTOR, PI3K-Akt, VEGF, and AMPK. Conclusion. The hypoxia risk model could serve as an independent prognostic indicator and reflect overall immune response intensity in the OC microenvironment.
Funder
Natural Science Basic Research Program of Shaanxi Province
Subject
Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism