An Improved Hybrid Genetic Algorithm with a New Local Search Procedure

Author:

Wan Wen1ORCID,Birch Jeffrey B.2

Affiliation:

1. Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298-0032, USA

2. Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0439, USA

Abstract

One important challenge of a hybrid genetic algorithm (HGA) (also called memetic algorithm) is the tradeoff between global and local searching (LS) as it is the case that the cost of an LS can be rather high. This paper proposes a novel, simplified, and efficient HGA with a new individual learning procedure that performs a LS only when the best offspring (solution) in the offspring population is also the best in the current parent population. Additionally, a new LS method is developed based on a three-directional search (TD), which is derivative-free and self-adaptive. The new HGA with two different LS methods (the TD and Neld-Mead simplex) is compared with a traditional HGA. Four benchmark functions are employed to illustrate the improvement of the proposed method with the new learning procedure. The results show that the new HGA greatly reduces the number of function evaluations and converges much faster to the global optimum than a traditional HGA. The TD local search method is a good choice in helping to locate a global “mountain” (or “valley”) but may not perform the Nelder-Mead method in the final fine tuning toward the optimal solution.

Publisher

Hindawi Limited

Subject

Applied Mathematics

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3