Using an Optimized Learning Vector Quantization- (LVQ-) Based Neural Network in Accounting Fraud Recognition

Author:

Zheng Yuan1ORCID,Ye Xiaolan2,Wu Ting3

Affiliation:

1. School of Finance, Anhui University of Finance and Economics, Bengbu, Anhui 233030, China

2. School of Insurance, Southwestern University of Finance and Economics, Chengdu, Sichuan 611130, China

3. School of Computer Science, ZhongYuan University of Technology, Zhengzhou, Henan 450007, China

Abstract

With the continuous development and wide application of artificial intelligence technology, artificial neural network technology has begun to be used in the field of fraud identification. Among them, learning vector quantization (LVQ) neural network is the most widely used in the field of fraud identification, and the fraud identification rate is relatively high. In this context, this paper explores this neural network technology in depth, uses the same fraud sample to test the fraud recognition rate of these two models, and proposes an optimized LVQ-based combined neural network fraud risk recognition model on this basis. This paper selects 550 listed companies that have committed fraud from 2015 to 2019 as the fraud samples, determines 550 nonfraud matching sample companies in accordance with the Beasley principle one-to-one, and uses this as the research sample. The fraud risk identification indicators with better identification effects combed out according to the literature were used as the initial indicator system. After the collinearity problem was eliminated through the paired sample T test and principal component analysis, the five indicators with the best identification effects were finally selected. Finally, based on the above theoretical analysis and empirical research summarizing the full text, it analyzes the shortcomings of this research and puts forward prospects for the future development of fraud risk identification models.

Funder

Anhui University of Finance and Economics

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3