Study on Failure Modes and Energy Evolution of Coal-Rock Combination under Cyclic Loading

Author:

Song Shilin1,Liu Xuesheng12ORCID,Tan Yunliang1ORCID,Fan Deyuan1,Ma Qing1,Wang Honglei1

Affiliation:

1. State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China

2. State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, China Energy Group Co., Ltd., Beijing 100011, China

Abstract

The loading modes and roof lithology have a significant influence on the mechanical properties of coal seams. To reveal the failure modes and energy evolution law of underground coal during the mining process, conventional uniaxial and uniaxial cyclic loading tests were carried out on three types of samples: coal, rock, and coal-rock combinations. The results show that the samples mainly behave with three failure modes (shear slip, tensile splitting, and fracture), and all the coal sections in the coal-rock combinations fail, whereas most rock sections remain intact. The compressive strength of the coal-rock combination is higher than coal and much smaller than rock. Compared with the conventional uniaxial loading condition, both the maximum deformation before failure and Young’s modulus under the cyclic loading condition are greater, and the latter increases quadratically with the cycle index. The energy densities are also calculated, and their variations are analysed in detail. The results show that with increasing cycle index, both the elastic energy stored in the sample and the dissipated energy increase in a quadratic function, and the failure process becomes more intense. This research reveals the failure modes, deformation characteristics, and energy evolution of the coal-rock combination under different loading conditions, which can provide strong support for controlling underground surrounding rocks of the coal face and roadway in coalmines.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3