Multimodal Detection for Cryptogenic Epileptic Seizures Based on Combined Micro Sensors

Author:

Shen Zhitian12ORCID,Jiao Yang23ORCID,Xu Yiwen2,Shi Wei12,Yang Chen12,Li Dan4,Ma Hongtao245,Shao Weiwei2,Li Zhangjian12ORCID,Cui Yaoyao2ORCID

Affiliation:

1. University of Science and Technology of China, 230026, China

2. Medical Acoustic Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, China

3. University of Chinese Academy of Sciences, 100049, China

4. Department of Radiology, The First Hospital of Jilin University, 130021, China

5. Department of Neurological Surgery, Weill Medical College of Cornell University, NY 10065, USA

Abstract

The cryptogenic epilepsy of the neocortex is a disease in which the seizure is accompanied by intense cerebral nerve electrical activities but the lesions are not observed. It is difficult to locate disease foci. Electrocorticography (ECoG) is one of the gold standards in seizure focus localization. This method detects electrical signals, and its limitations are inadequate resolution which is only 10 mm and lack of depth information. In order to solve these problems, our new method with implantable micro ultrasound transducer (MUT) and photoplethysmogram (PPG) device detects blood changes to achieve higher resolution and provide depth information. The basis of this method is the neurovascular coupling mechanism, which shows that intense neural activity leads to sufficient cerebral blood volume (CBV). The neurovascular coupling mechanism established the relationship between epileptic electrical signals and CBV. The existence of mechanism enables us to apply our new methods on the basis of ECoG. Phantom experiments and in vivo experiments were designed to verify the proposed method. The first phantom experiments designed a phantom with two channels at different depths, and the MUT was used to detect the depth where the blood concentration changed. The results showed that the MUT detected the blood concentration change at the depth of 12 mm, which is the position of the second channel. In the second phantom experiments where a PPG device and MUT were used to monitor the change of blood concentration in a thick tube, the results showed that the trend of superficial blood concentration change provided by the PPG device is the same as that provided by the MUT within the depth of 2.5 mm. Finally, in the verification of in vivo experiments, the blood concentration changes on the surface recorded by the PPG device and the changes at a certain depth recorded by the MUT all matched the seizure status shown by ECoG. These results confirmed the effectiveness of the combined micro sensors.

Funder

Youth Innovation Promotion Association

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3