Digraph Spectral Clustering with Applications in Distributed Sensor Validation

Author:

Du Yue-Jin12,Lu Hui3,Zhai Li-Dong1

Affiliation:

1. Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100086, China

2. National Computer Network Emergency Response Technical Team/Coordination Center of China, 100080, China

3. Institute of Microelectronics of Chinese Academy of Sciences, 100081, China

Abstract

In various sensor networks, the performances of sensors vary significantly over time, due to the changes of surrounding environment, device hardware, and so forth. Hence, monitoring the status is essential in sensor network maintenance. Spectral clustering has been employed as an enabling technique to solve this problem. However, the traditional spectral clustering is developed for undirected graph, and the naive generalization for directed graph by symmetrization of the adjacency matrix will lead to loss of network information, and thus cannot efficiently detect bad sensor nodes while applying it for sensor validation. In this paper, we develop a generalized digraph spectral clustering method. Instead of simply symmetrizing the adjacency matrix, our method takes into consideration the network circulation while clustering the sensors. The extensive simulation results demonstrate that our method outperforms the traditional spectral clustering method by increasing the bad detection ratio from 19% to 41%.

Funder

863 National Hi-tech Research and Development Program

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3