Characteristics of Biofoam Cups Made from Sugarcane Bagasse with Rhizopus oligosporus as Binding Agent

Author:

Indarti Eti12ORCID,Muliani Sri1ORCID,Yunita Dewi1ORCID

Affiliation:

1. Agricultural Product Technology Department, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

2. Master Program of Agriculture Industrial Technology, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

Abstract

This study is aimed at producing a biofoam cup made from sugarcane bagasse with tempeh mold (Rhizopus oligosporus). Soybean flour (SF) was added to promote the growth of mycelia, which could bind the bagasse fiber matrix. The main materials were whole bagasse (B) and depithed bagasse (DB). The SF weight ratios to bagasse were 1 : 1 (SF1) and 1.5 : 1 (SF1.5). Therefore, the studied specimens were labeled B-SF1, DB-SF1, B-SF1.5, and DB-SF1.5. All biofoam cups were analyzed for their physical properties (water absorption and porosity), mechanical properties (puncture and compressive strengths), biodegradability, and thermal properties (thermogravimetric analysis). The lowest water absorption rates were obtained from the B biofoam cups ( 23 % ± 2.45 % ) and the SF1.5 biofoam cups ( 25.83 % ± 5.19 % ). Both B-SF1 and B-SF1.5 had lower porosity ( 8.72 % ± 0.88 % and 10.77 % ± 1.54 % , respectively) than the DB biofoam cups. Moreover, the B biofoam cups had smoother biofoam surfaces, smaller voids, and lower porosity compared with the DB samples. However, the DB biofoam cups showed the highest puncture strength ( 2.95 ± 0.37  kg cm−2) among all samples. Nevertheless, the B-SF1.5 biofoam cup had the highest compressive strength ( 3.98 ± 0.39  MPa) and the DB-SF1.5 exhibited the slowest degradation rate ( 27 % ± 0.7 % ) after 14 days of soil burial. The highest thermal stability was obtained from B-SF1.5, which had a thermal degradation temperature of 264°C. Overall, B-SF1.5 had the smoothest surface, good thermal stability, and high compressive strength.

Funder

Universitas Syiah Kuala

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

Reference37 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semi-Automatic Bio-Degradable Cup Making Machine using Coconut Leaflets;2023 International Conference on Sustainable Communication Networks and Application (ICSCNA);2023-11-15

2. A review on takeaway packaging waste: Types, ecological impact, and disposal route;Environmental Pollution;2023-11

3. Influence of Activated Carbon Concentration on Foam Material Properties: Design and Optimization;Arabian Journal for Science and Engineering;2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3