Damage Process and Fracture Mechanisms in the Rock Surrounding a Roadway Caused by Blasting-Induced Disturbance under High Stress

Author:

Lei Gang1,Wu Dawei2ORCID,Shi Xiaozhang1

Affiliation:

1. Faculty of Quality Management and Inspection, Yibin University, Yibin, Sichuan 644000, China

2. Department of Civil Engineering, Chengdu Technological University, Chengdu, Sichuan 644000, China

Abstract

The aim of this study is to investigate damage processes and fracture mechanisms in the rock surrounding a roadway under blasting-induced disturbance in a high-stress environment. A disturbance test involving blasting of the rock surrounding a roadway under different lateral pressure coefficients was conducted using high-precision acoustic emission (AE) monitoring. Based thereon, the spatiotemporal evolution and cluster characteristics of microcracks in the surrounding rock of the roadway under dynamic disturbance induced by explosive blasting were obtained, and stress transfer, adjustment, and redistribution in the rock mass were revealed. Moreover, a method for describing the progressive damage to the rock mass was established. The conclusions were as follows: the high-stress environment was conducive to microcrack initiation and propagation in the specimens, and the failure patterns of the surrounding rock of the roadway under different lateral pressure coefficients differed. The direction of crack propagation in the rock surrounding the roadway is opposite to that of the maximum principal stress applied to the rock mass. Blasting-induced disturbance intensifies crack initiation and accelerates damage accumulation and macrofracture formation in the rock mass. The macroscopic failure zone in a model is correlated with the ultimate distribution of apparent stress, and the apparent stress can reflect the adjustment of the stress field therein. The damage variable, characterized by the ratio of the number of AE events, can reveal the evolution of damage in the rock surrounding a roadway.

Funder

Yibin College Sailing Project

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3