Trained and Amphetamine-Induced Circling Behavior in Lesioned, Transplanted Rats

Author:

Richards Jerry B.1,Sabol Karen E.12,Kriek Evelyn H.1,Freed Curt R.1

Affiliation:

1. Division of Clinical Pharmacology and Toxicology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, C-237, Denver, Colorado 80262, USA

2. Department of Pharmacological and Physiological Sciences, University of Chicago, 947 E. 58th street, Chicago, IL 60637, USA

Abstract

Rats were trained to turn for water reinforcement and then were given unilateral 6- hydroxydopamine lesions. After lesion, rats showed deficits in trained turning both contraand ipsilateral to the side of the lesion, with contralateral turning more severely impaired. The lesioned rats were then transplanted with fetal mesencephalic dopamine tissue into striatum. A control group of lesioned rats were sham transplanted. Four weeks after transplant, 1.5 mg/kg D-amphetamine challenge injections were used to test the functioning of the transplants. In the control rats, D-amphetamine induced ipsilateral turning; in transplanted rats, D-amphetamine slowed the rate of ipsilateral turning or reversed the direction of amphetamine-induced rotation. Only rats which reversed their, amphetamine-induced turn direction after transplant were used for the rest of the experiment. Trained turning was assessed at 4, 8, 12 and 16 weeks post transplant. Transplants did not improve learned performance at any time post transplant. When D-amphetamine was administered in conjunction with the trained turning sessions, a low dose (0.12 mg/kg) enhanced contralateral trained turn rates, without affecting ipsilateral turn rates. Higher doses of amphetamine reduced ipsilateral turn rate in the transplanted animals. The results of this study suggest that transplants alone do not reinstate performance of conditioned rotation.

Funder

U.S. Public Health Service

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3