Affiliation:
1. Universidad Popular Autonoma del Estado de Puebla, A.C., Postgraduate Department of Logistics and Supply Chain Management, 17 Sur 711, Barrio de Santiago, Puebla, PUE 72410, Mexico
Abstract
The Traveling Salesman Problem (TSP) is an important routing problem within the transportation industry. However, finding optimal solutions for this problem is not easy due to its computational complexity. In this work, a novel operator based on dynamic reduction-expansion of minimum distance is presented as an initial population strategy to improve the search mechanisms of Genetic Algorithms (GA) for the TSP. This operator, termed as RedExp, consists of four stages: (a) clustering to identify candidate supply/demand locations to be reduced, (b) coding of clustered and nonclustered locations to obtain the set of reduced locations, (c) sequencing of minimum distances for the set of reduced locations (nearest neighbor strategy), and (d) decoding (expansion) of the reduced set of locations. Experiments performed on TSP instances with more than 150 nodes provided evidence that RedExp can improve convergence of the GA and provide more suitable solutions than other approaches focused on the GA’s initial population.
Subject
General Engineering,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献